STM-ARC-07-Projet d'architecture 3
- ue-a-stm-arc-07
- Génie Thermique Energétique et Environnement
Semestre : 8
Responsable(s) du contenu pédagogique
- Lazaros MAVROMATIDIS
- Christelle GRESS
- Alexandre GRUTTER
| Total coefficients : 1,5 |
| Total heures : 28,5 (4,5 cours, 24 projet) |
| Total heures travail personnel : 20 |
Prérequis
Pedagogical Director: Lazaros Mavromatidis
The students are supposed to have followed the courses A-STM-ARC-06 Projet d’architecture 1 and 2. Furthermore, the following prerequisites are applied:
- Basic notions of English (since the studio is held in English).
- Good knowledge of Collaborative Design Engineering Practices.
- Graphic communication skills.
Objectif
The design studio centers on the concept of "climatic heterotopia," which serves as the core theme for all explorations. In the current module, this notion is extended to focus on the building scale and interior ambiances, pushing students to envision innovative applications and integrations of these ideas. The objective is to address how post-carbon architecture can redefine the future of design by embracing sustainability, adaptability, and aesthetic innovation at both macro and micro levels.
This semester’s work emphasizes the building scale, aiming to develop projects down to the detail scale, creating comprehensive, actionable designs. Through the lens of "climatic heterotopia," participants are encouraged to investigate and redefine the relationship between architectural spaces and their environmental contexts, exploring how these interactions can inspire a healthier and more sustainable way of living.
A key focus is on the integration of recycled materials into interior spaces and building envelopes, exploring how these can contribute to both functionality and the creation of a new aesthetic dimension. This process seeks to demonstrate how sustainable practices can transcend traditional design paradigms, fostering innovative forms of space-making that reflect the principles of circular economy and environmental responsibility.
The module also highlights the collaboration between architecture and civil engineering disciplines, fostering a multidisciplinary approach to problem-solving. This partnership is pivotal in enabling the fabrication of full-scale prototypes, where theoretical concepts are translated into tangible, real-world solutions. The process of prototyping not only validates design ideas but also allows for iterative refinement and optimization of material choices, construction methods, and spatial qualities.
By integrating technical expertise, ecological consciousness, and artistic innovation, this module aims to advance the discourse on post-carbon architecture, pushing students to explore new frontiers in climate-responsive design and sustainable living. Together, we aspire to contribute to a future where buildings serve as harmonious extensions of their environments while reflecting humanity's commitment to a resilient and regenerative built world.
Compétences attendues
Axe A1 : CONNAISSANCES ET COMPRÉHENSION
Capacité à mettre en place un raisonnement scientifique rigoureux. Capacité à mobiliser les ressources d'un large champ de sciences fondamentales.
- Connaître et expliquer les concepts théoriques relatifs à un large champ de sciences fondamentales
- Formaliser un problème à l'aide d'outils analytiques ou numériques
- Être capable de résoudre un problème scientifique à l'aide de méthodes analytiques ou numériques
- Identifier et exploiter les interactions entre des champs de sciences fondamentales connexes
- Être capable de transposer les connaissances scientifiques dans le domaine de la spécialité
Axe A2 : ANALYSE TECHNIQUE
Capacité à mobiliser les ressources dans le domaine de la spécialité. Mettre en œuvre des connaissances techniques multidisciplinaires pour résoudre des problèmes d'ingénierie.
- Identifier un problème, le reformuler
- Déterminer les leviers d'actions permettant de résoudre un problème
- Identifier et comparer des méthodes de résolutions potentielles
- Choisir une méthode de résolution adaptée au problème et en évaluer l'efficacité
Axe A3 : CONCEPTION TECHNIQUE
Capacité à mobiliser ou à développer des nouvelles méthodes de conception afin de concevoir des produits, des processus et des systèmes en tenant compte des dernières avancées techniques dans le domaine tout en prenant en compte les enjeux environnementaux et énergétiques.
- Choisir, appliquer et adapter les méthodes d'analyse et de spécifications du besoin
- Analyser et comparer un large champ de données techniques
- Définir les solutions techniques répondant au besoin
- Établir les modèles en vue de la prévision du comportement du produit ou du système
- Choisir et appliquer les méthodes de dimensionnement et de modélisation
- Réaliser et interpréter des simulations
Axe A4 : PRATIQUE DE L’INGÉNIERIE
Aptitude à consulter et appliquer les codes de bonnes pratiques, sur la base d'études scientifiques et techniques, piloter et mettre en œuvre de manière structurée un projet ou un processus en organisant le travail des collaborateurs de l'entreprises dans le respect de la réglementation en matière de sécurité et dans le respect des valeurs sociétales et éthiques.
- Cartographier l'ensemble des solutions techniques dans le domaine de la spécialité
- Appliquer des méthodes de préconception ou de prédimensionnement
- Mener une réalisation conformément aux besoins exprimés
- Développer une démarche d'audit ou de diagnostic
- Mettre en œuvre une démarche de vérification systématique
- Être capable de proposer une démarche d'ingénierie respectueuse des valeurs sociétales et environnementales
- Être capable de faire un devis et d'évaluer financièrement un projet
Axe A5 : ÉTUDES ET RECHERCHES
Capacité à investiguer un sujet technique en mobilisant les données issue de la recherche afin de réaliser des tests, conduire des expérimentations et des études d'applications.
- Être capable de faire l'état de l'art scientifique et technique y compris dans un domaine non familier
- Faire preuve d'esprit critique et de créativité pour développer des idées originales et nouvelles
- Proposer des solutions innovantes en prenant en compte les objectifs de développement durable
- Évaluer le potentiel d’application d’une technologie émergente dans la spécialité d’ingénieur
- Concevoir, exploiter et évaluer un modèle, une simulation ou une expérimentation
Axe A6 : ARBITRAGE DES SITUATIONS COMPLEXES
Aptitude à réaliser des arbitrages sur les problèmes complexes et partiellement définis en prenant en compte les objectifs de développement durable définis par l'ONU.
- Connaître l'organisation de la recherche en général et les thématiques de recherche liées à la spécialité d’ingénieur
- Faire preuve d'esprit critique par rapport à son propre travail
- Être capable de prendre en compte les enjeux du développement durable dans l'ensemble de son activité
- Être sensibilisé à l'entrepreneuriat, l'innovation, la propriété intellectuelle et à la créativité
Axe A7 : COMMUNICATION ET TRAVAIL EN ÉQUIPE
S’intégrer dans une organisation, l’animer et la faire évoluer en communiquant efficacement en plusieurs langues, dans un contexte pluridisplinaire et multiculturel.
- Être capable de se positionner dans l'entreprise et dialoguer avec les autres métiers
- Mobiliser les outils de management de projet et les techniques de leadership
- Être capable de prendre en compte un contexte international et multiculturel
- Exploiter des méthodes de communication et les appliquer dans le champ de la spécialité y compris en langue étrangère
- Prendre en compte les problématiques de qualité, sécurité, environnement et les dimensions juridiques et socio-économiques
Axe A8 : APPRENTISSAGE TOUT AU LONG DE LA VIE
Capacité à être acteur de son propre développement de compétences en s'appuyant sur les bonnes pratiques, en construisant son réseau professionnel et en mobilisant les ressources de la formation professionnelle continue.
- Être capable de construire un projet professionnel
- Capitaliser les connaissances et les savoir-faire
- Être capable d'auto-évaluer ses compétences
Programme
This module focuses on the exploration and application of the concept of "climatic heterotopia" at the building scale, with an emphasis on interior ambiances and the development of architectural details. The program invites students to investigate and redefine the future of post-carbon architecture, emphasizing sustainability, innovative use of recycled materials, and the creation of a new aesthetic dimension for spatial design. Through interdisciplinary collaboration and hands-on prototyping, the module seeks to bridge theoretical concepts with practical applications, fostering a comprehensive understanding of sustainable design.
Objectives:
Climatic Heterotopia: Extend and apply the concept to buildings, examining how spaces interact with their environmental context to create adaptive, climate-responsive designs.
Interior Ambiances: Focus on the sensory and functional aspects of interiors, integrating recycled materials to redefine spatial quality and aesthetics.
Detail Scale Development: Translate large-scale architectural ideas into precise, actionable design details suitable for real-world implementation.
Sustainable Design: Investigate methods to promote post-carbon lifestyles through architecture that embodies principles of circular economy and ecological responsibility.
Program Outline:
Theoretical Foundation:
Introduction to climatic heterotopia and its application in architecture.
Study of post-carbon architecture, sustainable practices, and the circular economy.
Analysis of case studies to understand innovative uses of recycled materials and climate-responsive designs.
Design Exploration:
Develop a building-scale project emphasizing the integration of climatic heterotopia.
Design interiors that balance functionality, sensory experience, and sustainability.
Investigate the role of recycled materials in shaping spatial narratives and building envelopes.
Detail Development:
Translate conceptual designs into detailed architectural elements.
Focus on material properties, construction methods, and environmental performance.
Collaborate with civil engineering to address structural, thermal, and ecological aspects.
Prototyping and Fabrication:
Fabricate 1:1 scale prototypes to test and refine design concepts.
Experiment with material applications, construction techniques, and environmental adaptability.
Evaluate prototypes for functionality, aesthetics, and sustainability.
Collaborative Practice:
Work closely with civil engineering teams to ensure technical feasibility and optimization.
Incorporate interdisciplinary feedback to enhance the design process.
Evaluation and Reflection:
Assess designs and prototypes through critical review sessions.
Reflect on the integration of climatic heterotopia and its potential to inspire sustainable living.
Document the process, outcomes, and lessons learned for future applications.
Expected Outcomes:
Innovative Building Proposals: Holistic designs that exemplify climatic heterotopia at the building scale.
Detailed Architectural Solutions: Well-developed details and systems tailored to sustainable, post-carbon architecture.
1:1 Scale Prototypes: Physical representations of design ideas, showcasing material innovation and environmental responsiveness.
Cross-Disciplinary Insights: Enhanced understanding of the interplay between architectural design and civil engineering.
By the end of this module, students will have gained the ability to conceptualize and execute designs that align with the principles of post-carbon architecture, demonstrating a commitment to creating a healthier, more sustainable built environment.
Contraintes pédagogiques - Méthodes pédagogiques
The pedagogical constraints of this module include a transdisciplinary approach that combines architecture and civil engineering, the fabrication of a full-scale 1:1 prototype, and the use of recycled materials to design interior spaces and building envelopes aligned with the principles of post-carbon architecture. Students are required to develop projects that transition from the building scale to the detail scale, integrating environmental, technical, and aesthetic considerations while adhering to strict timelines and limited resources. The pedagogical methods employed are diverse, encompassing theoretical lectures to ground concepts of climatic heterotopia and sustainability, practical workshops to explore materials and fabrication techniques, and active collaboration with engineers to ensure technical feasibility. Regular critical reviews and feedback sessions are conducted to refine concepts and strengthen reflective thinking, while the fabrication of prototypes fosters hands-on learning and experimentation at a realistic scale.
Contraintes pédagogiques - Moyens spécifiques
The atelier serves as the creative and experimental hub where projects are conceived and evolve throughout the semester, acting as both a workspace and a collaborative learning environment. The pedagogical methods implemented in this module closely align with those used in the teaching of A-STM-ARC-06 (Projet d’architecture 1 and 2), emphasizing a process-driven approach to design development. A key aspect of this methodology is the iterative nature of project work, where students engage in continuous exploration, reflection, and refinement of their ideas. The atelier promotes a hands-on learning experience, leveraging tools such as physical and digital modeling, sketching, and diagramming to visualize and test design concepts. The use of software for parametric and performance-based analysis allows students to evaluate the environmental and technical aspects of their proposals in real-time. Collaborative sessions, including peer-to-peer critiques and discussions with instructors, foster a dynamic exchange of ideas and perspectives, encouraging critical thinking and collective problem-solving. The atelier also incorporates fabrication tools, enabling students to construct prototypes and mock-ups at various scales to test materiality, spatial qualities, and construction techniques. Throughout the semester, the atelier is both a laboratory for experimentation and a forum for dialogue, where theoretical insights are continuously applied to practical challenges, culminating in well-developed and innovative architectural proposals.
Mode d'évaluation
The evaluation methods for this module are designed to comprehensively assess the students' understanding, creativity, and ability to integrate the principles of climatic heterotopia into their architectural proposals. Throughout the semester, students are encouraged to engage in iterative design processes, and their progress is continuously reviewed through a combination of individual consultations, group critiques, and mid-term presentations. These formative assessments provide valuable feedback and guide the refinement of their projects. The culmination of the module is the final presentation, where students present their work before a jury composed of faculty members, invited experts, and practitioners. This presentation serves as a platform to demonstrate the depth of their conceptual thinking, technical rigor, and innovative application of sustainable design principles. The evaluation criteria include the clarity and originality of the architectural concept, the coherence and detail of the proposed solutions, the effectiveness of the design in addressing environmental and post-carbon challenges, and the quality of representation through drawings, models, and prototypes. The ability to articulate and defend their ideas during the jury session is also a critical component of the evaluation, as it reflects the students’ capacity to critically engage with their work and communicate it effectively. This comprehensive evaluation approach ensures a balanced appraisal of both the process and the final outcomes.
Bibliographie
Reference list (not exclusive)
- Foucault, Michel (1986). Of Other Spaces: Utopias and Heterotopias. Diacritics, 16(1), 22-27.
A foundational text introducing the concept of heterotopia and its relevance to spatial theory and architecture.
- Sassi, Paola (2006). Strategies for Sustainable Architecture. Taylor & Francis.
A detailed exploration of sustainable design principles, emphasizing the use of recycled materials and energy-efficient building strategies.
- Foster, Hal (1996). The Return of the Real: The Avant-Garde at the End of the Century. MIT Press.
This book provides insights into the relationship between aesthetics, materiality, and critical design practices.
- Banham, Reyner (1969). The Architecture of the Well-Tempered Environment. University of Chicago Press.
An analysis of architectural responses to environmental challenges and the integration of climate control systems in design.
-Knaack, Ulrich, et al. (2012). Façades: Principles of Construction. Birkhäuser Architecture.
A comprehensive guide to façade design and detailing, particularly relevant for understanding building envelopes.
- McDonough, William & Braungart, Michael (2002). Cradle to Cradle: Remaking the Way We Make Things. North Point Press.
A seminal work on sustainable design and the circular economy, advocating for materials and processes that are environmentally regenerative.
- Heschong, Lisa (1979). Thermal Delight in Architecture. MIT Press.
This book explores the sensory and experiential dimensions of climate-responsive design.
- Lehmann, Steffen (2019). Low Carbon Cities: Transforming Urban Systems. Routledge.
Provides strategies for designing post-carbon environments, with an emphasis on architecture’s role in mitigating climate change.
- AIA Committee on the Environment (COTE). Top Ten Toolkit for Sustainable Design.
A practical resource detailing strategies and benchmarks for sustainable architectural design.
- Kolb, David A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Prentice Hall.
Offers foundational theories on experiential learning methods, underpinning the pedagogical approach of iterative design and prototyping.