STG-GC-02-Mathématiques DUT/BTS 2

  • ue-sec-stg-math-08
  • Génie Mécanique

Semestre : 6

Responsable(s) du contenu pédagogique
  • Baptiste BILLAUD
  • Jean-Romain HEU
Total coefficients : 2
Total heures : 27 (15 cours, 12 TD)
Total heures travail personnel : 45

Prérequis

Notions sur les suites et les équations différentielles


Objectif

Apprentissage de notions de base sur la théorie des équations différentielles, ainsi que sur la théorie des suites numériques, en vue de la formation ultérieure des étudiants DUT/BTS.


Compétences attendues

Axe A1 : CONNAISSANCES ET COMPRÉHENSION
Capacité à mettre en place un raisonnement scientifique rigoureux. Capacité à mobiliser les ressources d'un large champ de sciences fondamentales.
- Connaître et expliquer les concepts théoriques relatifs à un large champ de sciences fondamentales
- Formaliser un problème à l'aide d'outils analytiques ou numériques
- Être capable de résoudre un problème scientifique à l'aide de méthodes analytiques ou numériques
- Identifier et exploiter les interactions entre des champs de sciences fondamentales connexes


Programme

Équations différentielles
-- Présentation des enjeux (définitions, théorème de Cauchy-Lispchitz, interprétation graphique) ;
-- Application à la résolution des équations différentielles du premier ordre en variables séparées ;
-- Théorie des équations différentielles linéaires du premier ordre.

Suites numériques
-- Définitions et propriétés élémentaires (convergence, divergence, limite, suites bornées) ;
-- Opérations algébriques sur les limites, caractérisation des suites complexes convergentes ;
-- Théorèmes de comparaison ;
-- Suites monotones, suites adjacentes, suites extraites, suites de Cauchy (notions de base).


Contraintes pédagogiques - Méthodes pédagogiques

Équations différentielles
-- Présentation des enjeux (définitions, théorème de Cauchy-Lispchitz, interprétation graphique) ;
-- Application à la résolution des équations différentielles du premier ordre en variables séparées ;
-- Théorie des équations différentielles linéaires du premier ordre.

Suites numériques
-- Définitions et propriétés élémentaires (convergence, divergence, limite, suites bornées) ;
-- Opérations algébriques sur les limites, caractérisation des suites complexes convergentes ;
-- Théorèmes de comparaison ;
-- Suites monotones, suites adjacentes, suites extraites, suites de Cauchy (notions de base).


Contraintes pédagogiques - Moyens spécifiques

Deux séances de CM avant le début des TD


Mode d'évaluation

Deux devoirs surveillés de 1h et de 1h30



Retour