STG-GC-01-Analyse 5

  • ue-sec-stg-math-07
  • Génie Mécanique

Semestre : 5

Responsable(s) du contenu pédagogique
  • Baptiste BILLAUD
  • Jean-Romain HEU
Total coefficients : 2
Total heures : 39 (16,5 cours, 13,5 TD, 4,5 TP, 3 projet, 1,5 e-learning)
Total heures travail personnel : 45

Prérequis

Algèbre 1 à 3
Analyse 1 à 4


Objectif

Apprentissage de notions de base sur les espaces vectoriels normés (EVN) en vue de l'application au calcul différentiel ;
Applications à des aspects théoriques à des situations concrètes ;
Présentations d'éléments de synthèse sur les notions rencontrées en Algèbre et en Analyse au cours des années précédentes.


Compétences attendues

Axe A1 : CONNAISSANCES ET COMPRÉHENSION
Capacité à mettre en place un raisonnement scientifique rigoureux. Capacité à mobiliser les ressources d'un large champ de sciences fondamentales.
- Connaître et expliquer les concepts théoriques relatifs à un large champ de sciences fondamentales
- Formaliser un problème à l'aide d'outils analytiques ou numériques
- Être capable de résoudre un problème scientifique à l'aide de méthodes analytiques ou numériques
- Identifier et exploiter les interactions entre des champs de sciences fondamentales connexes


Programme

Notions et exemples de base
-- Définitions et propriétés élémentaires ;
-- Exemples archétypaux (en dimension finie ou infinie) ;
-- Équivalence des normes (définition, cas de la dimension finie) ;
-- Suites à valeurs dans un EVN (définitions, propriétés élémentaires, analogie avec les suites numériques ou de fonctions).

Continuité sur les EVN
-- Définitions et propriétés élémentaires (caractérisation séquentielle, opérations algébriques, cas de la dimension finie, caractérisation par les ouverts ou les fermés) ;
-- Continuité et compacité (fonction continue sur un compact, norme l'EVN des fonctions continues sur un compact) ;
-- Applications linéaires continues (définitions, caractérisations, norme subordonnée, cas de la dimension finie) ;
-- Continuité et topologie produit (applications multilinéaires continues, caractérisations, norme subordonnée, cas de la dimension finie).

Introduction au calcul différentiel
-- Différentiabilité (définitions et propriétés élémentaires, exemples de base, notion de différentiabilité successive, linéarité) ;
-- Exemples avancés (application inverse) ;
-- Différentiabilité et composition, différentiabilité et topologie produit ;
-- Différentiabilité en dimension finie (dérivées partielles, matrice jacobienne).


Contraintes pédagogiques - Méthodes pédagogiques

Notions et exemples de base
-- Définitions et propriétés élémentaires ;
-- Exemples archétypaux (en dimension finie ou infinie) ;
-- Équivalence des normes (définition, cas de la dimension finie) ;
-- Suites à valeurs dans un EVN (définitions, propriétés élémentaires, analogie avec les suites numériques ou de fonctions).

Continuité sur les EVN
-- Définitions et propriétés élémentaires (caractérisation séquentielle, opérations algébriques, cas de la dimension finie, caractérisation par les ouverts ou les fermés) ;
-- Continuité et compacité (fonction continue sur un compact, norme l'EVN des fonctions continues sur un compact) ;
-- Applications linéaires continues (définitions, caractérisations, norme subordonnée, cas de la dimension finie) ;
-- Continuité et topologie produit (applications multilinéaires continues, caractérisations, norme subordonnée, cas de la dimension finie).

Introduction au calcul différentiel
-- Différentiabilité (définitions et propriétés élémentaires, exemples de base, notion de différentiabilité successive, linéarité) ;
-- Exemples avancés (application inverse) ;
-- Différentiabilité et composition, différentiabilité et topologie produit ;
-- Différentiabilité en dimension finie (dérivées partielles, matrice jacobienne).


Contraintes pédagogiques - Moyens spécifiques

Deux séances de CM avant le début des TD


Mode d'évaluation

Un devoir surveillé de 2h
Projet Maple



Retour